

CITES Tree Species Programme

Project CITES S544:

"Rapid-Field Identification of Dalbergia Woods and Rosewood Oil by NIRS Technology."

Kuala Lumpur, October 05 2022

A) Build NIRS models using portable devices for identification/classification of 20 *Dalbergia* species.

B) Develop a method of direct analysis by NIRS to authenticate the purity of *Aniba rosiodora* essential oil.

A2. Materials and methods – Dalbergia wood

3.1 Locations for collecting spectra:

5 Brazilian and 6 International wood Xylaria

3.2 Sample surface preparation:

The core of the *Dalbergia* specimens without visual defects.

3.3 Equipment:

MicroPhazir RX Analyzer handheld device

3.4 Spectral processing and data analysis: PLS-DA

A3. Results – Dalbergia wood

PLS-2DA

Training – 441 spectra

Number of samples = 221 Number of spectra = 663 Efficiency rate = 94.6%

Validation – 222 spectra

A3. Results – Dalbergia wood

NIR spectra of 29 Dalbergia wood species are collected.

Most demanded Dalbergia species exported from Brazil

Figures of merit obtained for the set of validation

Species	Nº of sample s	Nº of spectra	False positive rate	False negative rate	Efficiency rate
D. cearensis	47	141	4,5%	0%	97,7%
D. nigra	221	663	0%	10,5%	94,6%
D. spruceana	26	78	3,0%	0%	98 , 5%
D. brasiliensis	3	9	0%		
D. frutescens	17	51	2,7%	100%	0%
D. miscolobium	10	30	0%	0%	100%

1. Build models for the genus:

Cedrela (S. America),

Handroanthus and Paubrasilia (Brazil);

 Make app of the Matlab Program more userfriendly;

B2. Materials and methods – rosewood oil

Direct collection: Online purchase: Total samples: 59 batches - 13 different origins
9 batches - 9 different suppliers
68 batches - 130 samples

B2. Materials and methods – rosewood oil (A) NIRS - MicroPhazir RX Analyzer.

(B) GC-MS - Agilent Technologies

Spectral processing & data analysis: DDSIMCA The error and efficiency rates are evaluated

B3. Results- rosewood oil

Model with 3 main components Low occurrence of anomalous samples All samples were in the 99% confidence interval.

B4. Conclusions

1. The method is fast, shows low cost, and is very

efficient (98.9%) for *A. rosiodora* oil authenticity;

- 2. Is non-destructive, needs no pre-treatment, produces
- no chemical residues, and requires 0.2 mL of the sample.
- 3. GC-MS corroborates with the NIRS analyses;
- 4.95.4% of commercial

samples purchased in

Brazil were considered

non-authentic.

1. Physicochemical characterization of the Rosewood oil.

- 2.Expand NIRS Technology to other CITES oils:
 - a. Palo Santo (Bulnesia sarmientoi) from Argentina
 - b. East African Sandalwood (Osyris lanceolata)

from Kenia, Tanzania, and Uganda

A green and direct method for authentication of rosewood essential oil by handheld near infrared spectrometer and one-class classification modeling

Tereza C.M. Pastore^a, Lilian R. Braga^b, Daniele C.G. da C. Kunze^b, Liz F. Soares^b, Floriano Pastore Jr^b, Alessandro C. de O. Moreira^a, Priscila V. dos Anjos^b, Caroline S. Lara^c, Vera T.R. Coradin^a, Jez W. B. Braga^{b,d,*}

7. Lessons learned

- 1. Team must be passionately involved with the research topic and with the work;
- 2. Weekly meetings; quick communication via WhatsApp were made;
- 3. Materials and instruments are always available;
- A local consultant to collect forest products must be part of the team;
- 5. The team to assist in administrative procedures must exist;
- 6. The lack of clear administrative procedures created unnecessary delays.

Team

Researchers:

Dra. Tereza C. M. Pastore (Chemistry and Project Coordinator - LPF/SFB) Prof. Dr. Jez W. B. Braga (Chemometrician – Institute of Chemistry/UnB) Dra. Vera T. R. Coradin (Wood Anatomist – Associate Researcher at LPF/SFB) Dr. Paulo J. P de Fontes (Forest Engineer – Associate Researcher at LPF/SFB) Dr. Alessandro C. Moreira (Chemistry–LPF/SFB) Prof. Dra. Lillian R. Braga (Chemistry – UNIP) M.Sc. Alexandre B. Gontijo (Wood Anatomist – LPF/SFB) Prof. Dra. Júlia S. Oliveira (Wood Anatomist – Institute of Biology/UnB) Prof. Dr. Floriano Pastore Jr. (Chemistry–Institute of Chemistry/UnB) Prof. Dr. Christofer W. Fagg (Botanical– Institute of Biology/UnB) Dr Thiago de Oliveira (Forest Engineer – Consultant) M.Sc. Filipe A. S. de O. Barros (Químico - Consultant) M.Sc. Daniele C. G. da C. Kunze (Chemistry - Consultant) M.Sc. Liz F. Soares (Química - Consultant) Priscila V. dos A. Lopes (Chemistry - Assistant to the coordinator) Hugo da S. Rocha (UnB undergraduate student – Pibic scholarship) Mariana M. Moutinho (UnB undergraduate student – Pibic scholarship) Calebe S. Velasco (UnB undergraduate student – Pibic scholarship)

Financial management- FUNTEC

Thiago Oliveira (CEO) Alexandre F. F. Moura (Project manager) Fernanda R. B. de Sousa (Lawyer)

Thank you for your attention!

<u>jez.Braga@unb.br</u>

